论文标题

双$ l^1 $ - 空间中强大的分差性强度的结构

Structure of sets of strong subdifferentiability in dual $L^1$-spaces

论文作者

Jayanarayanan, C. R., Rao, T. S. S. R. K.

论文摘要

在本文中,我们分析了在双重空间中强尺差异点集的有限尺寸子空间的结构。在双$ L_1(μ)$空间中,这样一个子空间位于Yoshida-Hewitt型分解的离散部分。在此设置中,任何包含强大差异性点的BANACH空间都必须有限维度。我们的结果还导致了由于研究Banach空间中有限共和度子空间的强大近端研究的简化和新证明。

In this article, we analyse the structure of finite dimensional subspaces of the set of points of strong subdifferentiability in a dual space. In a dual $L_1(μ)$ space, such a subspace is in the discrete part of the Yoshida-Hewitt type decomposition. In this set up, any Banach space consisting of points of strong subdifferentiability is necessarily finite dimensional. Our results also lead to streamlined and new proofs of results from the study of strong proximinality for subspaces of finite co-dimension in a Banach space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源