论文标题

在线状态估算基于物理的锂硫电池模型

Online State Estimation for a Physics-Based Lithium-Sulfur Battery Model

论文作者

Xu, Chu, Cleary, Timothy, Wang, Daiwei, Li, Guoxing, Rahn, Christopher, Wang, Donghai, Rajamani, Rajesh, Fathy, Hosam K.

论文摘要

本文探讨了锂硫(LI-S)电池状态估计的问题。这种估计对于这种能量浓密化学的在线管理很重要。文献使用等效电路模型(ECM)进行LI-S状态估计。本文的主要目标是使用基于物理的模型执行估算。这种方法很有吸引力,因为它提供了在给定的LI-S细胞中单个物种质量的在线估计。使用实验验证的计算零维模型进行估计。重新制定将该模型从微分代数方程(DAE)转换为普通微分方程(ODE),从而简化了估计问题。该文章的第一个贡献是表明该模型的可观察力较差,尤其是在低原区域,在低原区域,细胞电压对沉淀硫质量的低灵敏度使该质量的估计复杂化。第二个贡献是利用质量保护来得出在高原区域和低平台区域具有有吸引力的可观察性特性的降级模型。最终的贡献是使用无味的卡尔曼过滤器(UKF)来估计内部LI-S电池状态,同时考虑物种质量的限制。与本文的可观察性分析一致,当使用降低阶模型时,UKF可实现更好的低平原估计精度。

This article examines the problem of Lithium-Sulfur (Li-S) battery state estimation. Such estimation is important for the online management of this energy-dense chemistry. The literature uses equivalent circuit models (ECMs) for Li-S state estimation. This article's main goal is to perform estimation using a physics-based model instead. This approach is attractive because it furnishes online estimates of the masses of individual species in a given Li-S cell. The estimation is performed using an experimentally-validated, computationally tractable zero-dimensional model. Reformulation converts this model from differential algebraic equations (DAEs) to ordinary differential equations (ODEs), simplifying the estimation problem. The article's first contribution is to show that this model has poor observability, especially in the low plateau region, where the low sensitivity of cell voltage to precipitated sulfur mass complicates the estimation of this mass. The second contribution is to exploit mass conservation to derive a reduced-order model with attractive observability properties in both high and low plateau regions. The final contribution is to use an unscented Kalman filter (UKF) for estimating internal Li-S battery states, while taking constraints on species masses into account. Consistent with the article's observability analysis, the UKF achieves better low-plateau estimation accuracy when the reduced-order model is used.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源