论文标题
液滴界面磷脂双层的表面能和分离力学
Surface Energy and Separation Mechanics of Droplet Interface Phospholipid Bilayers
论文作者
论文摘要
液滴界面双层是一个方便的模型系统,用于研究细胞膜的主要成分磷脂双层的生理化学特性。这些双层对各种外部机械刺激的机械响应是研究的活跃领域,因为对人造细胞的细胞活力和发展的影响。在此手稿中,我们使用实验和数值建模的组合来表征液滴界面双层的分离力学。最初,我们表明可以使用节能原理获得双层表面能。随后,我们通过以阶跃方式分离液滴并跟踪双层接触角和半径的演变来使系统处于阶跃应变。观察到双层接触角和半径的松弛时间,以及双层半径的衰减幅度,随着每个分离步骤而增加。通过分析作用在双层上的力和分离速率,我们表明双层主要通过剥离过程分离,具有从与角流相关的粘性耗散的主体抗性。最后,我们通过包含幼拉普拉斯方程和进化方程的数学模型来解释观察到的双层分离的内在特征。我们认为,报告的实验和数值结果扩展了对脂质双层力学的科学理解,并且开发的实验和数值工具为研究其他类型的双层机械的机制提供了方便的平台。
Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research due to implications for cellular viability and development of artificial cells. In this manuscript we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modeling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius, along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analyzing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising of the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.