论文标题

自动学习拓扑相边界

Automatic Learning of Topological Phase Boundaries

论文作者

Kerr, Alexander, Jose, Geo, Riggert, Colin, Mullen, Kieran

论文摘要

拓扑相变不遵守Landau的现象学模型(即自发的对称性破坏过程和消失的局部秩序参数),已经在凝结物理学中积极研究。由于拓扑指数的全球性质,拓扑相变的机器学习通常很困难。直到最近,扩散图的方法才显示出可有效识别拓扑顺序的变化。但是,先前的扩散图结果需要调整两个超参数:数据长度尺度和相位边界的数量。在本文中,我们介绍了一种不需要这种调整的启发式方法。这种启发式允许计算机程序在没有用户输入的情况下找到合适的超参数。我们通过在三个物理模型中绘制非常准确的相图来证明该方法的功效:石墨烯的Haldane模型,Su-Schreiffer-Haeger(SSH)模型的概括以及带有隧道连接的量子环的模型。这些图是从提供的一系列模型参数中绘制的,没有人类干预。

Topological phase transitions, which do not adhere to Landau's phenomenological model (i.e. a spontaneous symmetry breaking process and vanishing local order parameters) have been actively researched in condensed matter physics. Machine learning of topological phase transitions has generally proved difficult due to the global nature of the topological indices. Only recently has the method of diffusion maps been shown to be effective at identifying changes in topological order. However, previous diffusion map results required adjustments of two hyperparameters: a data length-scale and the number of phase boundaries. In this article we introduce a heuristic that requires no such tuning. This heuristic allows computer programs to locate appropriate hyperparameters without user input. We demonstrate this method's efficacy by drawing remarkably accurate phase diagrams in three physical models: the Haldane model of graphene, a generalization of the Su-Schreiffer-Haeger (SSH) model, and a model for a quantum ring with tunnel junctions. These diagrams are drawn, without human intervention, from a supplied range of model parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源