论文标题
径向对称的无质量标量量子场的半经典重力崩溃
Semiclassical gravitational collapse of a radially symmetric massless scalar quantum field
论文作者
论文摘要
我们提出了一种研究在连贯的初始状态下径向对称标量量子场的半经典重力崩溃的方法。形式主义在初始度量标准中利用了fock空间基础,是单一的,并且时间逆转到数值精度。它在整个时间演变中保持了度量与能量动量张量相干状态的能量动量张量的预期值的准确兼容性。我们发现了离散效应较小的简单标准,当地平线形成时会违反。作为第一个例子,我们研究了在角动量$ l = 0 $近似中特定状态的崩溃。在模拟卷之外,它会产生一个带有$ R_S \ sim 3.5 \ ell_p $的Schwarzschild公制。我们看到在半经典和相应的经典案例中,在没有大量离散化伪像的证据的情况下,在半经典和相应的经典案例中兼容的行为。在我们的示例设置中,我们看到量子效应加速了可能的地平线形成并将其径向向外移动。我们发现,这种效果是对径向分辨率的变化,时间步长,体积,渗透状态的初始位置和形状,真空减法,时间演化运算符的离散化以及度量指标的集成方案的鲁棒性。我们简要讨论该方法的潜在改进以及将其应用于黑洞蒸发的可能性。我们还简要介绍了形式主义扩展到更高的角度臂,但将细节和数字留给即将出版的出版物。
We present a method to study the semiclassical gravitational collapse of a radially symmetric scalar quantum field in a coherent initial state. The formalism utilizes a Fock space basis in the initial metric, is unitary and time reversal invariant up to numerical precision. It maintains exact compatibility of the metric with the expectation values of the energy momentum tensor in the scalar field coherent state throughout the entire time evolution. We find a simple criterion for the smallness of discretization effects, which is violated when a horizon forms. As a first example, we study the collapse of a specific state in the angular momentum $l=0$ approximation. Outside the simulated volume it produces a Schwarzschild metric with $r_s \sim 3.5 \ell_p$. We see behaviour that is compatible with the onset of horizon formation both in the semiclassical and corresponding classical cases in a regime where we see no evidence for large discretization artefacts. In our example setting, we see that quantum effects accelerate the possible horizon formation and move it radially outward. We find that this effect is robust against variations of the radial resolution, the time step, the volume, the initial position and shape of the inmoving state, the vacuum subtraction, the discretization of the time evolution operator and the integration scheme of the metric. We briefly discuss potential improvements of the method and the possibility of applying it to black hole evaporation. We also briefly touch on the extension of our formalism to higher angular momenta, but leave the details and numerics for a forthcoming publication.