论文标题

保形拉普拉斯第二特征值的变分特性

Variational Properties Of The Second Eigenvalue Of The Conformal Laplacian

论文作者

Gursky, Matthew J., Pérez-Ayala, Samuel

论文摘要

令$(m^n,g)$为dimension $ n \ ge 3 $的封闭式riemannian歧管。假设$ [g] $是保形的laplacian $ l_g $至少具有两个负特征值。我们展示了(广义)度量的存在,该指标在所有共形指标上最大化了$ l_g $的第二个特征值(第一个特征值是Yamabe Metric最大化的)。我们还表明,最大度量定义了Yamabe方程的淋巴结解决方案,或者是向球体的谐波图。此外,我们构建了每种可能性的例子。

Let $(M^n,g)$ be a closed Riemannian manifold of dimension $n\ge 3$. Assume $[g]$ is a conformal class for which the Conformal Laplacian $L_g$ has at least two negative eigenvalues. We show the existence of a (generalized) metric that maximizes the second eigenvalue of $L_g$ over all conformal metrics (the first eigenvalue is maximized by the Yamabe metric). We also show that a maximal metric defines either a nodal solution of the Yamabe equation, or a harmonic map to a sphere. Moreover, we construct examples of each possibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源