论文标题
CAM-GEN:因果意识到的度量指导文本生成
CaM-Gen:Causally-aware Metric-guided Text Generation
论文作者
论文摘要
内容是出于明确的目的而创建的,通常由以结构化信息的形式表示的度量或信号来描述。目标内容的目标(指标)与内容本身之间的关系是不平凡的。尽管大规模的语言模型显示出有希望的文本生成功能,但用外部指标指导生成的文本具有挑战性。这些指标和内容往往具有固有的关系,并非所有的关系都可能是结果。我们介绍了CAM-GEN:以用户定义的目标指标为指导的因果意识到的生成网络,并结合了公制和内容功能之间的因果关系。我们利用因果推理技术来识别文本的因果关系重要方面,这些方面导致目标度量标准,然后通过反馈机制明确指导生成模型。我们为分流自动编码器和基于变压器的生成模型提出了这种机制。提出的模型以目标度量控制的方式击败了基线,同时保持生成文本的流利性和语言质量。据我们所知,这是使用因果推理纳入指标指南的早期尝试之一。
Content is created for a well-defined purpose, often described by a metric or signal represented in the form of structured information. The relationship between the goal (metrics) of target content and the content itself is non-trivial. While large-scale language models show promising text generation capabilities, guiding the generated text with external metrics is challenging. These metrics and content tend to have inherent relationships and not all of them may be of consequence. We introduce CaM-Gen: Causally aware Generative Networks guided by user-defined target metrics incorporating the causal relationships between the metric and content features. We leverage causal inference techniques to identify causally significant aspects of a text that lead to the target metric and then explicitly guide generative models towards these by a feedback mechanism. We propose this mechanism for variational autoencoder and Transformer-based generative models. The proposed models beat baselines in terms of the target metric control while maintaining fluency and language quality of the generated text. To the best of our knowledge, this is one of the early attempts at controlled generation incorporating a metric guide using causal inference.