论文标题
添加chit聊天以增强面向任务的对话
Adding Chit-Chat to Enhance Task-Oriented Dialogues
论文作者
论文摘要
现有的对话语料库和模型通常是在两个截然不同的动机下设计的:以任务为导向的系统着重于实现功能目标(例如,预订酒店),开放域聊天机器人旨在进行社交吸引人的对话。在这项工作中,我们建议通过添加Chit-Chat来整合两种类型的系统,以增强以任务为导向的对话(Accentor),以使虚拟助手对话更具吸引力和交互性。具体而言,我们提出了一种人类AI协作数据收集方法,以通过最少的注释努力产生各种chit聊天的响应,以增强以任务为导向的对话。然后,我们将新的基于Chit-Chat的注释向两个流行的面向任务数据集(架构引导的对话和Multiwoz 2.1)的23.8K对话提供,并通过人类评估证明了它们比原始内容的优势。最后,我们提出了三个新的模型,以将chat添加到面向任务的对话中,并明确训练以预测用户目标并生成上下文相关的Chit-Chat响应。自动和人类评估表明,与最先进的任务基线相比,我们的模型可以在任务和chit-chat之间进行代码转换,使其更具吸引力,有趣,知识渊博和人性化,同时保持竞争性的任务绩效。
Existing dialogue corpora and models are typically designed under two disjoint motives: while task-oriented systems focus on achieving functional goals (e.g., booking hotels), open-domain chatbots aim at making socially engaging conversations. In this work, we propose to integrate both types of systems by Adding Chit-Chat to ENhance Task-ORiented dialogues (ACCENTOR), with the goal of making virtual assistant conversations more engaging and interactive. Specifically, we propose a Human <-> AI collaborative data collection approach for generating diverse chit-chat responses to augment task-oriented dialogues with minimal annotation effort. We then present our new chit-chat-based annotations to 23.8K dialogues from two popular task-oriented datasets (Schema-Guided Dialogue and MultiWOZ 2.1) and demonstrate their advantage over the originals via human evaluation. Lastly, we propose three new models for adding chit-chat to task-oriented dialogues, explicitly trained to predict user goals and to generate contextually relevant chit-chat responses. Automatic and human evaluations show that, compared with the state-of-the-art task-oriented baseline, our models can code-switch between task and chit-chat to be more engaging, interesting, knowledgeable, and humanlike, while maintaining competitive task performance.