论文标题

基于机器学习的核反应反转

Machine learning-based inversion of nuclear responses

论文作者

Raghavan, Krishnan, Balaprakash, Prasanna, Lovato, Alessandro, Rocco, Noemi, Wild, Stefan M.

论文摘要

对于阐明短距离核动力学的方面以及对中微子振荡实验的正确解释,需要对原子核与外部电探针的相互作用的显微镜​​描述。核量子蒙特卡洛方法从其拉普拉斯变换中推断出核电子响应函数。颠倒拉普拉斯变换是一个臭名昭著的问题。贝叶斯技术(例如最大熵)通常用于重建准层区域中的原始响应函数。在这项工作中,我们提出了一个适合近似拉普拉斯变换倒数的物理知识的人工神经网络结构。利用模拟的,尽管是逼真的电磁反应函数,我们表明,这种具有物理性的人工神经网络在低能传递和准循环区域中的最大熵优于最大熵,从而可以强大的计算电子散射和核上的核和包含muon捕获速率的电子散射和中性散射。

A microscopic description of the interaction of atomic nuclei with external electroweak probes is required for elucidating aspects of short-range nuclear dynamics and for the correct interpretation of neutrino oscillation experiments. Nuclear quantum Monte Carlo methods infer the nuclear electroweak response functions from their Laplace transforms. Inverting the Laplace transform is a notoriously ill-posed problem; and Bayesian techniques, such as maximum entropy, are typically used to reconstruct the original response functions in the quasielastic region. In this work, we present a physics-informed artificial neural network architecture suitable for approximating the inverse of the Laplace transform. Utilizing simulated, albeit realistic, electromagnetic response functions, we show that this physics-informed artificial neural network outperforms maximum entropy in both the low-energy transfer and the quasielastic regions, thereby allowing for robust calculations of electron scattering and neutrino scattering on nuclei and inclusive muon capture rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源