论文标题

拓扑边缘孤子及其在非线性su-schrieffer-Heeger模型中的稳定性

Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model

论文作者

Ma, Y. -P., Susanto, H.

论文摘要

我们研究了Su-Schrieffer-Heeger模型中拓扑边缘状态的延续,该模型具有现场立方(KERR)非线性,这是1D非线性光子拓扑拓扑器(TI)。基于潜在的空间动力学系统的拓扑结构,我们确定了拓扑带隙中所有正能量的非线性边缘状态(边缘孤子)的存在。我们发现,当弱耦合和强耦合之间的比率低于临界值时,这些边缘孤子在任何能量上都是稳定的。在临界耦合率之上,有一些能量间隔,边缘孤子经历了振荡性不稳定。尽管我们的论文侧重于光子系统,但我们也讨论了我们的方法和结果与1D非线性机械TI的更广泛相关性。

We study continuations of topological edge states in the Su-Schrieffer-Heeger model with on-site cubic (Kerr) nonlinearity, which is a 1D nonlinear photonic topological insulator (TI). Based on the topology of the underlying spatial dynamical system, we establish the existence of nonlinear edge states (edge solitons) for all positive energies in the topological band gap. We discover that these edge solitons are stable at any energy when the ratio between the weak and strong couplings is below a critical value. Above the critical coupling ratio, there are energy intervals where the edge solitons experience an oscillatory instability. Though our paper focuses on a photonic system, we also discuss the broader relevance of our methods and results to 1D nonlinear mechanical TIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源