论文标题
通过有限元分析确定任意形状悬臂的校准参数
Determination of Calibration Parameters of Cantilevers of Arbitrary Shape by Finite Elements Analysis
论文作者
论文摘要
在纳米力学测量中使用原子力显微镜需要对悬臂的弹簧常数($ k_c $)和光杆灵敏度($ ols $)进行准确的校准。基于悬臂在流体中的热波动的热方法允许在快速无创模式下估算$ k_c $。但是,悬臂几何形状和安装角的差异需要三个校正因子的知识,才能获得$ k_c $的良好估计:振荡模式对总振幅的贡献,自由构型和最终载荷配置之间的形状差,以及悬臂对测量表面的倾斜度。虽然已经报道了传统矩形和V形悬臂几何形状的校正因子,但必须针对具有非传统几何形状和大尖端的悬臂确定它们。在这里,我们开发了一种基于有限元分析的方法,以估计具有任意几何形状和尖端尺寸的悬臂的校正因子。该方法依赖于有效悬臂质量的数值计算。在我们的模型悬臂(PFQNM-LC)上使用校正因子对矩形几何形状的使用将导致值低于16%的值。相比之下,使用预校准的悬臂进行的实验显示,在$ OLS $的估计中,最大不确定性低于5%,从而验证了我们的方法。
The use of atomic force microscopy on nanomechanical measurements requires accurate calibration of the cantilever's spring constant ($k_c$) and the optical lever sensitivity ($OLS$). The thermal method, based on the cantilever's thermal fluctuations in fluid, allows estimating $k_c$ in a fast, non-invasive mode. However, differences in the cantilever geometry and mounting angle require the knowledge of three correction factors to get a good estimation of $k_c$: the contribution of the oscillation mode to the total amplitude, the shape difference between the free and the end-loaded configurations, and the tilt of the cantilever respect to the measured surface. While the correction factors for traditional rectangular and V-shaped cantilevers geometries have been reported, they must be determined for cantilevers with non-traditional geometries and large tips. Here, we develop a method based on finite element analysis to estimate the correction factors of cantilevers with arbitrary geometry and tip dimensions. The method relies on the numerical computation of the effective cantilever mass. The use of the correction factor for rectangular geometries on our model cantilever (PFQNM-LC) will lead to values underestimated by 16%. In contrast, experiments using pre-calibrated cantilevers revealed a maximum uncertainty below 5% in the estimation of the $OLS$, verifying our approach.