论文标题
DLDL:动态标签词典通过超图正则化
DLDL: Dynamic Label Dictionary Learning via Hypergraph Regularization
论文作者
论文摘要
对于分类任务,近年来,基于字典的学习方法吸引了很多关注。实现此目的的一种流行方法是引入标签信息以生成歧视性词典来表示样本。但是,与传统的词典学习相比,这种类别的方法仅在监督学习方面取得了重大改善,对半监督或无监督学习的积极影响很小。为了解决此问题,我们提出了动态标签词典学习(DLDL)算法,以生成用于未标记数据的软标签矩阵。具体而言,我们采用超图歧管正则化,以保持原始数据,转换数据和软标签的关系一致。我们证明了在两个遥感数据集上提出的DLDL方法的效率。
For classification tasks, dictionary learning based methods have attracted lots of attention in recent years. One popular way to achieve this purpose is to introduce label information to generate a discriminative dictionary to represent samples. However, compared with traditional dictionary learning, this category of methods only achieves significant improvements in supervised learning, and has little positive influence on semi-supervised or unsupervised learning. To tackle this issue, we propose a Dynamic Label Dictionary Learning (DLDL) algorithm to generate the soft label matrix for unlabeled data. Specifically, we employ hypergraph manifold regularization to keep the relations among original data, transformed data, and soft labels consistent. We demonstrate the efficiency of the proposed DLDL approach on two remote sensing datasets.