论文标题
通过扰动分析迈向核能密度功能理论中的功率
Towards a power counting in nuclear energy-density-functional theories through a perturbative analysis
论文作者
论文摘要
我们通过分析对称和中子物质的状态方程(EOSS)方程来说明朝着能量功能(EDF)理论计数的功率计数的一步。在采用的策略中,引入了近代领先顺序(NLO)EOSS,其中包含重新归一化的一阶术语和明确的二阶有限零件。作为指导,我们将分析的分析重点放在了两个方面:(i)NLO引入的反对词数量最少,我们表明,在EOS中输入的每个能量贡献都具有定期的进化,就势头临界值的定期进化(在Panded Procented Procepture Procepture中引入)以临时固定,我们的分析均具有定期的进化(在EOS中引入了定期进化(在EOS中引入)。每个术语的收敛特征与其费米 - 摩托明依赖性有关。 (ii)我们发现二阶有限零件系数的渐近演化是扰动行为的有力指示,这反过来证实,在选择的SkyRME启发的EDF框架中,采用的策略与可能的基础功率相一致。
We illustrate a step towards the construction of a power counting in energy-density-functional (EDF) theories, by analyzing the equations of state (EOSs) of both symmetric and neutron matter. Within the adopted strategy, next-to-leading order (NLO) EOSs are introduced which contain renormalized first-order-type terms and an explicit second-order finite part. Employing as a guide the asymptotic behavior of the introduced renormalized parameters, we focus our analysis on two aspects: (i) With a minimum number of counterterms introduced at NLO, we show that each energy contribution entering in the EOS has a regular evolution with respect to the momentum cutoff (introduced in the adopted regularization procedure) and is found to converge to a cutoff-independent curve. The convergence features of each term are related to its Fermi-momentum dependence. (ii) We find that the asymptotic evolution of the second-order finite-part coefficients is a strong indication of a perturbative behavior, which in turns confirms that the adopted strategy is coherent with a possible underlying power counting in the chosen Skyrme-inspired EDF framework.