论文标题

一项有关在低资源场景中自然语言处理方法的最新方法的调查

A Survey on Recent Approaches for Natural Language Processing in Low-Resource Scenarios

论文作者

Hedderich, Michael A., Lange, Lukas, Adel, Heike, Strötgen, Jannik, Klakow, Dietrich

论文摘要

深度神经网络和巨大的语言模型在自然语言应用中无处不在。正如他们以需要大量培训数据而闻名的那样,越来越多的工作来改善低资源环境中的性能。由于最近对神经模型的根本变化以及流行的预训练和微调范式的动机,我们调查了低资源自然语言处理的有希望的方法。在讨论了数据可用性的不同维度之后,我们对方法进行了结构化的概述,该方法在培训数据稀疏时可以学习。这包括创建其他标记数据的机制,例如数据增强和遥远的监督,以及减少目标监督需求的转移学习设置。我们调查的目的是解释这些方法在其要求上如何有所不同,因为理解它们对于选择适合特定低资源环境的技术至关重要。这项工作的另一个关键方面是突出开放问题,并概述未来研究的有希望的方向。

Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settings. Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing. After a discussion about the different dimensions of data availability, we give a structured overview of methods that enable learning when training data is sparse. This includes mechanisms to create additional labeled data like data augmentation and distant supervision as well as transfer learning settings that reduce the need for target supervision. A goal of our survey is to explain how these methods differ in their requirements as understanding them is essential for choosing a technique suited for a specific low-resource setting. Further key aspects of this work are to highlight open issues and to outline promising directions for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源