论文标题

颗粒,纯和无序系统中的保形不变性和关键性

Particles, conformal invariance and criticality in pure and disordered systems

论文作者

Delfino, Gesualdo

论文摘要

二维案例由于晶格溶液提供的确切结果,直接在连续体中,由形式的代数的无限尺寸特征在临界现象理论中占据了特殊的立场。但是,该理论的某些部门,以及在猝灭障碍和短距离相互作用的系统中最尤为重要的行业,出现在确切方法的范围之外,并且缺乏分析解决方案的见解。在本文中,我们回顾了最新的进展,实现了域理论粒子描述中的保形不变性。形式主义产生了确切的单位方程,其解决方案将临界点与给定的对称分类。在纯系统的情况下,它提供了新的见解,以及在存在短距离猝灭障碍的情况下首次获得关键性的准确访问。分析机制出现了,在随机情况下,允许某些关键指数的超级工会性,并明确使一阶偏移通过障碍的软化。

The two-dimensional case occupies a special position in the theory of critical phenomena due to the exact results provided by lattice solutions and, directly in the continuum, by the infinite-dimensional character of the conformal algebra. However, some sectors of the theory, and most notably criticality in systems with quenched disorder and short range interactions, have appeared out of reach of exact methods and lacked the insight coming from analytical solutions. In this article we review recent progress achieved implementing conformal invariance within the particle description of field theory. The formalism yields exact unitarity equations whose solutions classify critical points with a given symmetry. It provides new insight in the case of pure systems, as well as the first exact access to criticality in presence of short range quenched disorder. Analytical mechanisms emerge that in the random case allow the superuniversality of some critical exponents and make explicit the softening of first order transitions by disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源