论文标题

频段动力学伴随着连续体中的绑定状态,在泄漏模式光子晶格中的第三阶$γ$点

Band dynamics accompanied by bound states in the continuum at the third-order $Γ$ point in leaky-mode photonic lattices

论文作者

Lee, Sun-Goo, Kim, Seong-Han, Kee, Chul-Sik

论文摘要

近年来,已经对连续体(BIC)(BICS)和FANO共振的结合状态(包括元声音晶格和光子晶体板)进行了广泛研究。通常,BICS和FANO共振与在二阶伽玛($γ$)点开放的第二停频带有关。本文介绍了第四停频带的基本特性,并在一维(1D)泄漏模式光子晶格中以第三阶$γ$点为BIC。在第四停频段,一个带边缘模式会遭受辐射损失,从而产生了FANO共振,而另一个带边缘模式变成了非屏蔽的BIC。第四停频带主要由与周期介电恒定调制的第一,第二和第四傅立叶谐波组件相关的Bragg过程控制。这三个主要过程之间的相互作用截止了第四个频段隙并引起频带翻转,从而使第四个频段间隙的泄漏和BIC边缘过境。在第四停频段,由于第一和第二傅立叶谐波之间的破坏性相互作用,形成了一种新型的BIC。当第四个频段隙以强烈增强的$ Q $因素关闭时,狄拉克锥分散剂可能会出现在第三阶$γ$点。我们的结果证明了一种通过在第四停止频段利用高$ q $ bloch模式来操纵电磁波的方法。

Bound states in the continuum (BICs) and Fano resonances in planar photonic lattices, including metasurfaces and photonic crystal slabs, have been studied extensively in recent years. Typically, the BICs and Fano resonances are associated with the second stop bands open at the second-order Gamma ($Γ$) point. This paper address the fundamental properties of the fourth stop band accompanied by BICs at the third-order $Γ$ point in one-dimensional (1D) leaky-mode photonic lattices. At the fourth stop band, one band edge mode suffers radiation loss, thereby generating a Fano resonance, while the other band edge mode becomes a nonleaky BIC. The fourth stop band is controlled primarily by the Bragg processes associated with the first, second, and fourth Fourier harmonic components of the periodic dielectric constant modulation. The interplay between these three major processes closes the fourth band gap and induces a band flip whereby the leaky and BIC edges transit across the fourth band gap. At the fourth stop band, a new type of BIC is formed owing to the destructive interplay between the first and second Fourier harmonics. When the fourth band gap closes with strongly enhanced $Q$ factors, Dirac cone dispersions can appear at the third-order $Γ$ point. Our results demonstrate a method for manipulating electromagnetic waves by utilizing the high-$Q$ Bloch modes at the fourth stop band.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源