论文标题

机器学习是否能够根据电信号检测和分类压电骨水泥中的故障?

Is Machine Learning Able to Detect and Classify Failure in Piezoresistive Bone Cement Based on Electrical Signals?

论文作者

Ghaednia, Hamid, Owens, Crystal E., Keiderling, Lily E., Varadarajan, Kartik M., Hart, A. John, Schwab, Joseph H., Tallman, Tyler T.

论文摘要

在美国,每年估计成本为80亿美元,对联合置换总替代者的修订手术代表了医疗保健系统的重大财务负担。固定故障,例如植入物的松动,磨损和机械不稳定性(甲基丙烯酸甲酯)(PMMA)水泥,将植入物与骨骼结合到骨骼上,是长期植入物衰竭的主要原因。早期,准确的水泥衰竭诊断对于制定新的治疗策略和降低错误修订的高风险至关重要。不幸的是,盛行的成像方式,尤其是X光片,难以检测植入物衰竭的前体,并且经常被错误地解释。我们先前的工作表明,用低浓度的导电填充剂对PMMA骨水泥的修饰使其具有压力性,因此具有自感应,因此,当与电导率成像方式(例如电障碍层析成像(EIT))结合使用时,可以使用PMMA跨PMMA,具有成本效益,物理上的良性良性良性测量和实时测量来监测跨PMMA的负载转移。本文中,我们通过将机器学习技术与EIT集成来扩展这些结果。我们调查了针对此问题应用的不同机器学习算法和主要成分分析,包括用于跟踪样本的EIT幻影的电压读数的神经网络,指定缺陷位置以及分类缺陷类型。我们的结果表明,在解释位置跟踪,指定缺陷位置和缺陷分类的EIT信号方面,神经网络的优势分别超过91.9%,95.5%和98%的精度。这些初步结果表明,智能材料,EIT和机器学习的结合可能是诊断关节置换中故障的起源和演变的有力工具。

At an estimated cost of $8 billion annually in the United States, revision surgeries to total joint replacements represent a substantial financial burden to the health care system. Fixation failures, such as implant loosening, wear, and mechanical instability of the poly(methyl methacrylate) (PMMA) cement, which bonds the implant to the bone, are the main causes of long-term implant failure. Early and accurate diagnosis of cement failure is critical for developing novel therapeutic strategies and reducing the high risk of a misjudged revision. Unfortunately, prevailing imaging modalities, notably plain radiographs, struggle to detect the precursors of implant failure and are often interpreted incorrectly. Our prior work has shown that the modification of PMMA bone cement with low concentrations of conductive fillers makes it piezoresistive and therefore self-sensing such that when combined with a conductivity imaging modality, such as electrical impedance tomography (EIT), it is possible to monitor load transfer across the PMMA using cost-effective, physiologically benign, and real-time electrical measurements. Herein, we expand upon these results by integrating machine learning techniques with EIT. We survey different machine learning algorithms and principal component analysis for application to this problem, including neural networks on voltage readings of an EIT phantom for tracking position of a sample, specifying defect location, and classifying defect types. Our results show advantage of neural network with more than 91.9 %, 95.5 %, and 98 % accuracy in interpreting EIT signals for location tracking, specifying defect location, and defect classification respectively. These preliminary results show that the combination of smart materials, EIT, and machine learning may be a powerful tool for diagnosing the origin and evolution of failure in joint replacement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源