论文标题

非平滑非convex优化的惯性块最小化框架

An Inertial Block Majorization Minimization Framework for Nonsmooth Nonconvex Optimization

论文作者

Hien, Le Thi Khanh, Phan, Duy Nhat, Gillis, Nicolas

论文摘要

在本文中,我们介绍了泰坦(Titan),这是一种新型的惯性块最小化框架,用于非平滑的非凸优化问题。据我们所知,泰坦是块坐标更新方法的第一个框架,该方法依赖于大型最小化框架,同时将惯性力嵌入到块更新的每个步骤中。惯性力是通过外推算子获得的,该操作员构成了重型球和Nesterov型加速度,以作为特殊情况作为块近端梯度方法。通过选择各种替代功能,例如近端,Lipschitz梯度,布雷格曼,二次和复合替代功能,并通过改变外推操作员来生成一组丰富的惯性块坐标坐标更新方法。我们研究了泰坦生成序列的子顺序收敛以及全局收敛。我们说明了泰坦对两个重要的机器学习问题的有效性,即稀疏的非负矩阵分解和矩阵完成。

In this paper, we introduce TITAN, a novel inerTIal block majorizaTion minimizAtioN framework for non-smooth non-convex optimization problems. To the best of our knowledge, TITAN is the first framework of block-coordinate update method that relies on the majorization-minimization framework while embedding inertial force to each step of the block updates. The inertial force is obtained via an extrapolation operator that subsumes heavy-ball and Nesterov-type accelerations for block proximal gradient methods as special cases. By choosing various surrogate functions, such as proximal, Lipschitz gradient, Bregman, quadratic, and composite surrogate functions, and by varying the extrapolation operator, TITAN produces a rich set of inertial block-coordinate update methods. We study sub-sequential convergence as well as global convergence for the generated sequence of TITAN. We illustrate the effectiveness of TITAN on two important machine learning problems, namely sparse non-negative matrix factorization and matrix completion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源