论文标题
Cellcyclegan:使用统计形状模型和条件gan的时空显微镜图像合成细胞种群
CellCycleGAN: Spatiotemporal Microscopy Image Synthesis of Cell Populations using Statistical Shape Models and Conditional GANs
论文作者
论文摘要
对于生命科学的最新研究,不可避免地对时空显微镜图像进行自动分析。深度学习的最新发展为自动分析此类图像数据提供了强大的工具,但在很大程度上取决于提供的培训数据的数量和质量以表现出色。为此,我们开发了一种新的方法,用于实际生成荧光标记的细胞核的合成2D+T显微镜图像数据。该方法将不同细胞周期阶段的时空统计形状模型与有条件的GAN结合在一起,以生成细胞群体的时间序列,并提供了对细胞周期阶段的实例级控制和产生的细胞的荧光强度。我们展示了gan条件的效果,并创建了一组合成图像,这些图像可以很容易地用于训练和基准细胞分割和跟踪方法。
Automatic analysis of spatio-temporal microscopy images is inevitable for state-of-the-art research in the life sciences. Recent developments in deep learning provide powerful tools for automatic analyses of such image data, but heavily depend on the amount and quality of provided training data to perform well. To this end, we developed a new method for realistic generation of synthetic 2D+t microscopy image data of fluorescently labeled cellular nuclei. The method combines spatiotemporal statistical shape models of different cell cycle stages with a conditional GAN to generate time series of cell populations and provides instance-level control of cell cycle stage and the fluorescence intensity of generated cells. We show the effect of the GAN conditioning and create a set of synthetic images that can be readily used for training and benchmarking of cell segmentation and tracking approaches.