论文标题

图形注意网络的全双工RIS辅助HAP进行回程的频道估计

Channel Estimation for Full-Duplex RIS-assisted HAPS Backhauling with Graph Attention Networks

论文作者

Tekbıyık, Kürşat, Kurt, Güneş Karabulut, Huang, Chongwen, Ekti, Ali Rıza, Yanikomeroglu, Halim

论文摘要

在本文中,首先将图形注意网络(GAT)用于通道估计。根据6G期望,我们考虑了一个高空平台站(HAP)安装的可重新配置的智能表面辅助双向通信,并获得低顶间和高归一化均匀的均方误差性能。在RIS集成的HAPS上的双向进行回程链路上研究了所提出的方法的性能。模拟结果表明,GAT估计器在全双工通道估计中表现不佳。与先前引入的方法相反,其中一个节点处的GAT可以分别估计级联的通道系数。因此,在全双工通信中的试点信号传导期间,无需使用时间划分的双面模式。此外,还表明,即使训练数据不包含所有这些变化,GAT估计器对于硬件缺陷和小规模褪色特征的变化也很强。

In this paper, graph attention network (GAT) is firstly utilized for the channel estimation. In accordance with the 6G expectations, we consider a high-altitude platform station (HAPS) mounted reconfigurable intelligent surface-assisted two-way communications and obtain a low overhead and a high normalized mean square error performance. The performance of the proposed method is investigated on the two-way backhauling link over the RIS-integrated HAPS. The simulation results denote that the GAT estimator overperforms the least square in full-duplex channel estimation. Contrary to the previously introduced methods, GAT at one of the nodes can separately estimate the cascaded channel coefficients. Thus, there is no need to use time-division duplex mode during pilot signaling in full-duplex communication. Moreover, it is shown that the GAT estimator is robust to hardware imperfections and changes in small-scale fading characteristics even if the training data do not include all these variations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源