论文标题

群集和周期的随机图的不对称拉姆西特性

Asymmetric Ramsey Properties of Random Graphs for Cliques and Cycles

论文作者

Liebenau, Anita, Mattos, Letícia, Mendonça, Walner, Skokan, Jozef

论文摘要

我们说$ g \ to(f,h)$如果在每个边缘着色$ c:e(g)\ to \ {1,2 \} $中,我们可以找到$ 1 $ 1 $颜色的$ f $或$ 2 $颜色的副本。众所周知的kohayakawa - kreuter的猜想指出,属性$ g(n,p)\ to(f,h)$等于$ n^{ - 1/m_ {2}(f,h)} $,其中$ n^{ - 1/m_ {2}(f,h)} $,其中$ m_ {2}(f,h)(f,h)$由\ [m_ {2}(f,h)提供\ left \ {\ dfrac {e(j)} {v(j)-2+1/m_2(h)}:j \ subseteq f,e(j)\ ge 1 \ right \}。 \]在本文中,我们显示了每对循环和集团的Kohayakawa-Kreuter猜想的$ 0 $陈述。

We say that $G \to (F,H)$ if, in every edge colouring $c: E(G) \to \{1,2\}$, we can find either a $1$-coloured copy of $F$ or a $2$-coloured copy of $H$. The well-known Kohayakawa--Kreuter conjecture states that the threshold for the property $G(n,p) \to (F,H)$ is equal to $n^{-1/m_{2}(F,H)}$, where $m_{2}(F,H)$ is given by \[ m_{2}(F,H):= \max \left\{\dfrac{e(J)}{v(J)-2+1/m_2(H)} : J \subseteq F, e(J)\ge 1 \right\}. \] In this paper, we show the $0$-statement of the Kohayakawa--Kreuter conjecture for every pair of cycles and cliques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源