论文标题
非亚洲仪表理论的自学蒙特卡洛与动态费用
Self-learning Monte-Carlo for non-abelian gauge theory with dynamical fermions
论文作者
论文摘要
在本文中,我们开发了针对非亚伯仪表理论的自学蒙特卡洛(SLMC)算法,具有四个维度的动态费用,以解决晶格QCD中的自相关问题。我们对HMC和SLMC中的动力学交错费用和plaquette仪表进行模拟,以检查SLMC的有效性。我们确认,SLMC可以减少非亚伯仪理论中的自相关时间,并重现HMC的结果。对于有限温度运行,我们确认SLMC使用HMC重现了正确的结果,包括Polyakov环和手性冷凝物的高阶矩。此外,我们的有限温度计算表明,在哥伦比亚图中的跨界策略中,可能有四个带有$ \ hat {m} = 0.5 $的风味qc $ {} _ 2 $ d。
In this paper, we develop the self-learning Monte-Carlo (SLMC) algorithm for non-abelian gauge theory with dynamical fermions in four dimensions to resolve the autocorrelation problem in lattice QCD. We perform simulations with the dynamical staggered fermions and plaquette gauge action by both in HMC and SLMC for zero and finite temperature to examine the validity of SLMC. We confirm that SLMC can reduce autocorrelation time in non-abelian gauge theory and reproduces results from HMC. For finite temperature runs, we confirm that SLMC reproduces correct results with HMC, including higher-order moments of the Polyakov loop and the chiral condensate. Besides, our finite temperature calculations indicate that four flavor QC${}_2$D with $\hat{m} = 0.5$ is likely in the crossover regime in the Colombia plot.