论文标题

具有深度特征和接近图的快速和增量循环闭合检测

Fast and Incremental Loop Closure Detection with Deep Features and Proximity Graphs

论文作者

An, Shan, Zhu, Haogang, Wei, Dong, Tsintotas, Konstantinos A., Gasteratos, Antonios

论文摘要

近年来,机器人社区已广泛研究了有关在同时本地化和映射应用程序范围内有关位置识别任务的方法。本文提出了一个基于外观的循环闭合检测管道,名为“ fild ++”(快速而增量的循环闭合检测),该系统通过连续的图像进行了,并通过连续的图像来提供,并通过连续的图像来提供,并通过连续的图像来提供,并通过连续的图像来提供,并通过连续的图像来提供。提取。随后,一个可逐步导航的小图形图表构造一个可视数据库,代表机器人基于计算的全局特征的穿越路径。最终,设置的查询图像设置为获取每个时间步骤,以获取在travered travered travers travers travers the travers to to totry.imimage-image-image配对之后,从而启动了一位局部特征,从而启用了一项信息。与我们以前的工作(FILD)形成鲜明对比的全球和本地功能提取的网络,而对验证过程进行了详尽的搜索,避免了生成的深层特征,以避免使用哈希守则的详尽实验。图像)与其他最先进的方法相比。

In recent years, the robotics community has extensively examined methods concerning the place recognition task within the scope of simultaneous localization and mapping applications.This article proposes an appearance-based loop closure detection pipeline named ``FILD++" (Fast and Incremental Loop closure Detection).First, the system is fed by consecutive images and, via passing them twice through a single convolutional neural network, global and local deep features are extracted.Subsequently, a hierarchical navigable small-world graph incrementally constructs a visual database representing the robot's traversed path based on the computed global features.Finally, a query image, grabbed each time step, is set to retrieve similar locations on the traversed route.An image-to-image pairing follows, which exploits local features to evaluate the spatial information. Thus, in the proposed article, we propose a single network for global and local feature extraction in contrast to our previous work (FILD), while an exhaustive search for the verification process is adopted over the generated deep local features avoiding the utilization of hash codes. Exhaustive experiments on eleven publicly available datasets exhibit the system's high performance (achieving the highest recall score on eight of them) and low execution times (22.05 ms on average in New College, which is the largest one containing 52480 images) compared to other state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源