论文标题

关于深层但天真的部分标签学习的力量

On the Power of Deep but Naive Partial Label Learning

论文作者

Seo, Junghoon, Huh, Joon Suk

论文摘要

部分标签学习(PLL)是一类弱监督的学习,每个培训实例都包含一个数据和一组包含独特地面真相标签的候选标签。为了解决这个问题,大多数当前的最新方法都采用标签歧义或平均策略。到目前为止,没有此类技术的PLL方法被认为是不切实际的。在本文中,我们通过揭示最古老和天真的PLL方法的隐藏力来挑战这种观点,当它与深度神经网络实例化时。具体而言,我们表明,借助深层神经网络,Naive模型可以针对其他最新方法实现竞争性能,这表明它是PLL的强大基线。我们还解决了这样一个天真模型如何以及为什么与深层神经网络良好效果的问题。我们的经验结果表明,即使在过度参数化的制度中,也没有标签的歧义或正规化,接受了部分标记的例子进行训练的深神经网络也很好地推广。我们指出,PLL上的现有学习理论在过度参数化的制度中是空虚的。因此,他们无法解释为什么深渊天真的方法有效。我们提出了一个关于深度学习如何在PLL问题中推广的替代理论。

Partial label learning (PLL) is a class of weakly supervised learning where each training instance consists of a data and a set of candidate labels containing a unique ground truth label. To tackle this problem, a majority of current state-of-the-art methods employs either label disambiguation or averaging strategies. So far, PLL methods without such techniques have been considered impractical. In this paper, we challenge this view by revealing the hidden power of the oldest and naivest PLL method when it is instantiated with deep neural networks. Specifically, we show that, with deep neural networks, the naive model can achieve competitive performances against the other state-of-the-art methods, suggesting it as a strong baseline for PLL. We also address the question of how and why such a naive model works well with deep neural networks. Our empirical results indicate that deep neural networks trained on partially labeled examples generalize very well even in the over-parametrized regime and without label disambiguations or regularizations. We point out that existing learning theories on PLL are vacuous in the over-parametrized regime. Hence they cannot explain why the deep naive method works. We propose an alternative theory on how deep learning generalize in PLL problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源