论文标题
在有限的群体上,正好有两个非亚洲中央位置
On finite groups with exactly two non-abelian centralizers
论文作者
论文摘要
在本文中,我们用独特的非亚伯元素centralizer来表征有限的$ g $。这改进了\ cite [theorem 1.1] {nab}。除其他结果外,我们已经证明,如果$ c(a)$是$ g $ $ g $的适当非亚洲元素中心元素,那么对于某些$ a \ in g $中的$ g $,则$ \ frac {c(a)} {z(g)} $是$ \\ frac {g} $ c'g'g'y是$ c'g' c(a)$,其中$ g'$是$ g $的换向器子组。
In this paper, we characterize finite group $G$ with unique proper non-abelian element centralizer. This improves \cite[Theorem 1.1]{nab}. Among other results, we have proved that if $C(a)$ is the proper non-abelian element centralizer of $G$ for some $a \in G$, then $\frac{C(a)}{Z(G)}$ is the Fitting subgroup of $\frac{G}{Z(G)}$, $C(a)$ is the Fitting subgroup of $G$ and $G' \in C(a)$, where $G'$ is the commutator subgroup of $G$.