论文标题

神经之星域作为原始表示

Neural Star Domain as Primitive Representation

论文作者

Kawana, Yuki, Mukuta, Yusuke, Harada, Tatsuya

论文摘要

从2D图像重建3D对象是计算机视觉中的基本任务。通过简约和语义原始表示的准确结构化重建进一步扩大了其应用。当重建具有多个原始物的目标形状时,最好可以立即访问形状的基本特性(例如集体体积和表面)的结合,将原始素处理好,就好像它们是一种形状一样。通过具有统一的隐式和明确表示的原始表示,这可能是可能的。但是,当前方法中的原始表示并不能同时满足上述所有要求。为了解决这个问题,我们提出了一种名为Neural Star Domain(NSD)的新型原始表示,该表示在星形域中学习原始形状。我们表明,NSD是星形域的通用近似值,不仅是简约的和语义的,而且是隐式和明确的形状表示。我们证明,我们的方法在图像重建任务,语义功能以及采样高分辨率网格的速度和质量中的现有方法优于现有方法。

Reconstructing 3D objects from 2D images is a fundamental task in computer vision. Accurate structured reconstruction by parsimonious and semantic primitive representation further broadens its application. When reconstructing a target shape with multiple primitives, it is preferable that one can instantly access the union of basic properties of the shape such as collective volume and surface, treating the primitives as if they are one single shape. This becomes possible by primitive representation with unified implicit and explicit representations. However, primitive representations in current approaches do not satisfy all of the above requirements at the same time. To solve this problem, we propose a novel primitive representation named neural star domain (NSD) that learns primitive shapes in the star domain. We show that NSD is a universal approximator of the star domain and is not only parsimonious and semantic but also an implicit and explicit shape representation. We demonstrate that our approach outperforms existing methods in image reconstruction tasks, semantic capabilities, and speed and quality of sampling high-resolution meshes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源