论文标题

非boussinesq低源数对流,依赖温度依赖的热扩散率

Non-Boussinesq low-Prandtl number convection with a temperature-dependent thermal diffusivity

论文作者

Pandey, Ambrish, Schumacher, Jörg, Sreenivasan, Katepalli R.

论文摘要

为了了解热扩散性对阳光般星星中对流的特性的强烈径向依赖性的作用,我们通过在水平扩展的矩形域(applage batio 16)中在非贝贝克 - 贝斯孔(NOB)对流(NOB)对流(NOB)中的作用(通过允许热量扩散$κ$κ$κ$κ$κ$κ$κ$κ,而在水平扩展的对流中的作用(abor)。直接数值模拟(即通过解决最小尺度而不需要任何建模的情况下,管理方程的数值解决方案)表明,与Oberbeck-Boussinesq(ob)模拟相比,我们在比较中均保持了较高的范围和vel的温度均具有velluck the eys and velementer and velimention and verementer and velementer and velementer and velsement and velsem and velsement and velsem and velementiriment。我们选择的$κ(t)$类似于恒星的变化,导致温度场将其精细的结构失去了计算域的较热部分,但是湍流的热热''的特征大小是其大小通常比对流域的大小更大的结构,该结构通常比深度较大。

In an attempt to understand the role of the strong radial dependence of thermal diffusivity on the properties of convection in sun-like stars, we mimic that effect in non-Oberbeck-Boussinesq (NOB) convection in a horizontally-extended rectangular domain (aspect ratio 16), by allowing the thermal diffusivity $κ$ to increase with the temperature (as in the case of stars). Direct numerical simulations (i.e., numerical solutions of the governing equations by resolving up to the smallest scales without requiring any modeling) show that, in comparison with Oberbeck-Boussinesq (OB) simulations (two of which we perform for comparison purposes), the symmetry of the temperature field about the mid-horizontal plane is broken, whereas the velocity and heat flux profiles remain essentially symmetric. Our choice of $κ(T)$, which resembles the variation in stars, results in the temperature field that loses its fine structures towards the hotter part of the computational domain, but the characteristic large scale of the turbulent thermal `superstructures', which are structures whose size is typically larger than the depth of the convection domain, continue to be largely independent of the depth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源