论文标题
MADER:多试剂和动态环境中的轨迹规划师
MADER: Trajectory Planner in Multi-Agent and Dynamic Environments
论文作者
论文摘要
本文介绍了Mader,这是一种无人机的3D分散和异步轨迹规划师,可在具有静态障碍,动态障碍和其他计划代理的环境中产生无冲突的轨迹。通过执行轨迹每个间隔的外部多面体表示,然后包括将每对polyhedra分开作为优化问题中的决策变量,可以完成与其他动态障碍物或试剂的实时碰撞避免使用的实时碰撞。 Mader使用我们最近开发的MINVO基础来获得分别为2.36倍和254.9倍的外部多面体表示,比Bernstein或B-Spline碱基小于规划文献中使用的B-Spline碱基。我们的分散和异步算法通过将其承诺的轨迹作为优化中的约束,然后执行碰撞检查检查方案,从而确保对其他代理的安全性。最后,与伯恩斯坦(Bernstein)和B平原基地相比,在挑战性混乱环境中的大量模拟显示出高达33.9%的降低,停止次数减少了88.8%,比同步分中心的近距离距离较短的飞行距离,比集中式方法较短。
This paper presents MADER, a 3D decentralized and asynchronous trajectory planner for UAVs that generates collision-free trajectories in environments with static obstacles, dynamic obstacles, and other planning agents. Real-time collision avoidance with other dynamic obstacles or agents is done by performing outer polyhedral representations of every interval of the trajectories and then including the plane that separates each pair of polyhedra as a decision variable in the optimization problem. MADER uses our recently developed MINVO basis to obtain outer polyhedral representations with volumes 2.36 and 254.9 times, respectively, smaller than the Bernstein or B-Spline bases used extensively in the planning literature. Our decentralized and asynchronous algorithm guarantees safety with respect to other agents by including their committed trajectories as constraints in the optimization and then executing a collision check-recheck scheme. Finally, extensive simulations in challenging cluttered environments show up to a 33.9% reduction in the flight time, and a 88.8% reduction in the number of stops compared to the Bernstein and B-Spline bases, shorter flight distances than centralized approaches, and shorter total times on average than synchronous decentralized approaches.