论文标题

实际三个空间中的切线四边形

Tangent Quadrics in Real 3-Space

论文作者

Brysiewicz, Taylor, Fevola, Claudia, Sturmfels, Bernd

论文摘要

我们检查了与九个给定数字相切的3空间中的二次表面。这些数字可以是点,线,平面或四边形。赫尔曼·舒伯特(Hermann Schubert)在1879年确定了切线尺寸的数量。我们研究了多项式方程的相关系统,也是在完整四边形的空间中,并使用认证的数值方法来解决它们。我们的目的是表明舒伯特的问题是完全真实的。

We examine quadratic surfaces in 3-space that are tangent to nine given figures. These figures can be points, lines, planes or quadrics. The numbers of tangent quadrics were determined by Hermann Schubert in 1879. We study the associated systems of polynomial equations, also in the space of complete quadrics, and we solve them using certified numerical methods. Our aim is to show that Schubert's problems are fully real.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源