论文标题

STN4DST:基于插槽标记导航的可扩展对话状态跟踪

STN4DST: A Scalable Dialogue State Tracking based on Slot Tagging Navigation

论文作者

Yang, Puhai, Huang, Heyan, Mao, Xianling

论文摘要

处理未知插槽值的可伸缩性是对话状态跟踪(DST)的重要问题。据我们所知,以前的可扩展DST方法通常依赖于插槽标记输出或对话环境中的跨度提取的候选生成。但是,基于候选的DST通常由于其管道的两阶段过程而遭受错误传播。同时,基于跨度提取的DST在开始和终端位置指示之间缺乏语义限制的情况下,有产生无效跨度的风险。为了解决上述缺点,在本文中,我们提出了一种基于插槽标记导航的新型可扩展对话状态跟踪方法,该方法通过对对话中的端口标记和插槽值进行预测,尤其是对于未知的插槽值,它通过对插槽标记和插槽值的联合学习来快速,准确地定位和精确地提取插槽值,尤其是对于未知的插槽值,以快速而准确地提取插槽值。在几个基准数据集上进行的广泛实验表明,所提出的模型的性能比最先进的基准更好。

Scalability for handling unknown slot values is a important problem in dialogue state tracking (DST). As far as we know, previous scalable DST approaches generally rely on either the candidate generation from slot tagging output or the span extraction in dialogue context. However, the candidate generation based DST often suffers from error propagation due to its pipelined two-stage process; meanwhile span extraction based DST has the risk of generating invalid spans in the lack of semantic constraints between start and end position pointers. To tackle the above drawbacks, in this paper, we propose a novel scalable dialogue state tracking method based on slot tagging navigation, which implements an end-to-end single-step pointer to locate and extract slot value quickly and accurately by the joint learning of slot tagging and slot value position prediction in the dialogue context, especially for unknown slot values. Extensive experiments over several benchmark datasets show that the proposed model performs better than state-of-the-art baselines greatly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源