论文标题

不规则的三倍的一般类型的Noether-severi不平等和平等

Noether-Severi inequality and equality for irregular threefolds of general type

论文作者

Hu, Yong, Zhang, Tong

论文摘要

我们证明了$ \ mathrm {vol}(x)(x)\ ge \ frac {4} {4} {3}χ(ω__{x})$ for All Smooth and and smooth $ 3 $ 3 $ -folds $ -folds $ x $ type $ \ mathbb {c c} $。对于达到平等的$ 3 $ folds $ x $,我们完全描述了它们的规范模型,并表明拓扑基本组$π_1(x)\ simeq \ simeq \ mathbb {z}^2 $。作为推论,我们以相同的$ x $获得另一个最佳不等式,$ \ mathrm {vol}(x)(x)\ ge \ frac {4} {3} {3} h^0_a(x,k_x)$ withy $ h^0_a(x,k_x)$ where $ k_x $ and and and and and and and at act $ x $ x $ \ mathrm {vol}(x)= \ frac {4} {3}χ(ω__{x})$。

We prove the optimal Noether-Severi inequality that $\mathrm{vol}(X) \ge \frac{4}{3} χ(ω_{X})$ for all smooth and irregular $3$-folds $X$ of general type over $\mathbb{C}$. For those $3$-folds $X$ attaining the equality, we completely describe their canonical models and show that the topological fundamental group $π_1(X) \simeq \mathbb{Z}^2$. As a corollary, we obtain for the same $X$ another optimal inequality that $\mathrm{vol}(X) \ge \frac{4}{3}h^0_a(X, K_X)$ where $h^0_a(X, K_X)$ stands for the continuous rank of $K_X$, and we show that $X$ attains this equality if and only if $\mathrm{vol}(X) = \frac{4}{3}χ(ω_{X})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源