论文标题

Barndorff-Nielsen和Balakrishnan-Stepanov的定理概括到Riesz Space

Generalization of the theorems of Barndorff-Nielsen and Balakrishnan-Stepanov to Riesz spaces

论文作者

Mushambi, Nyasha, Watson, Bruce A., Zinsou, Bertin

论文摘要

在Dedekind完整的Riesz Space,$ e $中,我们表明,如果$(p_n)$是$ e $ the $ e $ then $ e $ then $ e \ limsup \ limits_ {n \ to \ infty} p_n- \ liminf \ liminf \ limits_ fimits_ N \ to \ infty fy \ infty} p_n = n flims_ p_n(i-p_ {n+1})。$$此身份用于在Dedekind完整的Riesz空间中获得有条件的扩展,该空间较弱,并且Barndorff-nielsen和Balakrishnan-Stepanov的有条件期望操作员是第一个Borel-Cantelli Theorem的概括。

In a Dedekind complete Riesz space, $E$, we show that if $(P_n)$ is a sequence of band projections in $E$ then $$\limsup\limits_{n\to \infty} P_n - \liminf\limits_{n\to \infty} P_n = \limsup\limits_{n\to \infty} P_n(I-P_{n+1}).$$ This identity is used to obtain conditional extensions in a Dedekind complete Riesz spaces with weak order unit and conditional expectation operator of the Barndorff-Nielsen and Balakrishnan-Stepanov generalizations of the First Borel-Cantelli Theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源