论文标题

关于非平稳PIIN层次结构的对称性及其应用

On symmetries of the non-stationary PIIn hierarchy and their applications

论文作者

Bobrova, Irina

论文摘要

在目前的论文中,我们研究了非平台第二parchlevé层次结构$ \ text {p} _ \ text {ii}^{(n)} $的自动 - bäcklund转换,这取决于$ n $ parameters:a parameter $α_n$和times $ times $ t_1,\ t_1,\ dots $ t_1,\ dots,\ dots,\ dots,t_ t _ {n-1-1} $。使用发电机$ s^{(n)} $和$ r^{(n)} $的这些对称性,我们已经构造了一个与$ n $ th成员相关联的offine weyl offine weyl offine weyl offine weyl offine weyl offine weyl grout $ w^{(n)} $。我们通过yablonskii-vorobiev-type polyenmials $ u_m^{(n)}(z)$确定了$ \ text {p} _ \ text {ii}^{(n)} $合理解决方案。我们提出了yablonskii-vorobiev-type多项式与多项式$τ$ - functions $τ_m^{(n)}(z)$之间的相关性,并以jacobi-trudi形式找到了他们的决定性表示。

In the current paper we study auto-Bäcklund transformations of the non-stationary second Painlevé hierarchy $\text{P}_\text{II}^{(n)}$ depending on $n$ parameters: a parameter $α_n$ and times $t_1, \dots, t_{n-1}$. Using generators $s^{(n)}$ and $r^{(n)}$ of these symmetries, we have constructed an affine Weyl group $W^{(n)}$ and its extension $\tilde{W}^{(n)}$ associated with the $n$-th member considered hierarchy. We determined $\text{P}_\text{II}^{(n)}$ rational solutions via Yablonskii-Vorobiev-type polynomials $u_m^{(n)} (z)$. We brought out a correlation between Yablonskii-Vorobiev-type polynomials and polynomial $τ$-functions $τ_m^{(n)} (z)$ and found their determinant representation in the Jacobi-Trudi form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源