论文标题

$ {\ cal z} _2 $不变的六个vertex模型的缩放限制

Scaling limit of the ${\cal Z}_2$ invariant inhomogeneous six-vertex model

论文作者

Bazhanov, Vladimir V., Kotousov, Gleb A., Koval, Sergii M., Lukyanov, Sergei L.

论文摘要

这项工作包含了一项详细的研究,该研究对特定的临界,不均匀的六个vertex模型的缩放极限,但受到扭曲的边界条件。它基于对Bethe Ansatz方程以及ODE/IQFT对应的强大分析技术的数值分析。结果表明,晶格系统的临界行为由$ {\ rm sl}(2)$ WZW模型描述,其某些边界和现实条件在字段上施加。我们的建议修改并扩展了晶格系统与欧几里得黑洞非线性Sigma模型之间的猜想关系,该模型是在2011年的Ikhlef,Jacobsen和Saleur中制成的。

The work contains a detailed study of the scaling limit of a certain critical, integrable inhomogeneous six-vertex model subject to twisted boundary conditions. It is based on a numerical analysis of the Bethe ansatz equations as well as the powerful analytic technique of the ODE/IQFT correspondence. The results indicate that the critical behaviour of the lattice system is described by the gauged ${\rm SL}(2)$ WZW model with certain boundary and reality conditions imposed on the fields. Our proposal revises and extends the conjectured relation between the lattice system and the Euclidean black hole non-linear sigma model that was made in the 2011 paper of Ikhlef, Jacobsen and Saleur.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源