论文标题
在太阳能与线路式磁通绳中的圆环不稳定性阈值的实验室研究
Laboratory study of the torus instability threshold in solar-relevant, line-tied magnetic flux ropes
论文作者
论文摘要
当长寿命磁通绳(MFR)锚定在太阳表面上不稳定并爆发出太阳时,会发生冠状质量弹出(CME)。这种不稳定通常是用理想的磁流失动力(MHD)不稳定性来描述的,称为圆环不稳定性。它发生在外部磁场降低足够快的速度时,以使其衰减索引,$ n = -z \,\ partial \,(\ ln b)/\部分z $大于关键值,$ n> n _ {\ rm cr} $,其中$ n _ {\ n _ {\ rm cr} = 1.5 $ for a $ n _ {\ rm cr} = 1.5 $。但是,当将其应用于太阳MFR时,文献中可以找到$ n _ {\ rm cr} $的一系列相互冲突的值。为了研究这种差异,我们已经对拱形的,线绑带的绳索进行了实验室实验,并采用了圆环不稳定性的理论模型。我们的模型将MFR描述为部分圆环,该圆环锚定在导电表面上,并在其上计算了各种磁力。该计算得出$ n _ {\ rm cr} $的更好预测,该预测考虑了MFR的特定参数。我们描述了一种系统的方法,可以将实验室结果正确地转换为太阳能对应物,前提是MFR具有足够小的边缘安全系数,或者等效地,足够大的扭曲。翻译后,我们的模型预测,在太阳条件下的$ n _ {\ rm cr} $通常接近$ n _ {\ rm cr}^{\ rm sol} \ sim0.9 $,并且在$ n _ {\ rm cr}^{\ rm cr}^{\ rm sol} {\ rm sol} {\ rm sol} {\ rm sol} \ sim(0.7,7,7,1.7,7,1.2)范围内。将实验室MFR转换为太阳能对应物的方法可以通过实验室实验对CME的启动进行定量研究。这些实验允许对更好的太空天气事件进行更好预测所需的新物理学见解,但否则很难获得。
Coronal mass ejections (CME) occur when long-lived magnetic flux ropes (MFR) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic (MHD) instability called the torus instability. It occurs when the external magnetic field decreases sufficiently fast such that its decay index, $n=-z\,\partial\,(\ln B)/\partial z$ is larger than a critical value, $n>n_{\rm cr}$, where $n_{\rm cr}=1.5$ for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting values for $n_{\rm cr}$ is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments on arched, line-tied flux ropes and have applied a theoretical model of the torus instability. Our model describes an MFR as a partial torus with footpoints anchored in a conducting surface and numerically calculates various magnetic forces on it. This calculation yields a better prediction of $n_{\rm cr}$ which takes into account the specific parameters of the MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts, provided that the MFRs have sufficiently small edge safety factor, or equivalently, large enough twist. After this translation, our model predicts that $n_{\rm cr}$ in solar conditions often falls near $n_{\rm cr}^{\rm Sol}\sim0.9$ and within a larger range of $n_{\rm cr}^{\rm Sol}\sim(0.7,1.2)$ depending on the parameters. The methodology of translating laboratory MFRs to their solar counterparts enables quantitative investigations of the initiation of CMEs through laboratory experiments. These experiments allow for new physics insights that are required for better predictions of space weather events but are difficult to obtain otherwise.