论文标题

迪拉克快速炒作

Dirac Fast Scramblers

论文作者

Kim, Jaewon, Altman, Ehud, Cao, Xiangyu

论文摘要

我们介绍了一个大量的羊牛模型,其中包括大量费米昂和玻色子风味,作为Sachdev-Ye-Kitaev模型的更高维度的概括。这些模型可以从局部晶格耦合中得出,并在1+1和2+1尺寸中引起洛伦兹不变的临界解决方案。这些解决方案意味着玻色子和费米子的异常维度是由玻色子与费米香气的数量比调谐的。在1+1尺寸中,解决方案表示稳定的临界相,而在2+1尺寸中,它控制量子相变。我们在1+1维模型中计算出可能的时间顺序相关器,表明它在低温极限中表现出最大Lyapunov指数$λ_l=2πt$的生长。

We introduce a family of Gross-Neveu-Yukawa models with a large number of fermion and boson flavors as higher dimensional generalizations of the Sachdev-Ye-Kitaev model. The models may be derived from local lattice couplings and give rise to Lorentz invariant critical solutions in 1+1 and 2+1 dimensions. These solutions imply anomalous dimensions of both bosons and fermions tuned by the number ratio of boson to fermion flavors. In 1+1 dimension the solution represents a stable critical phase, while in 2+1 dimension it governs a quantum phase transition. We compute the out of time order correlators in the 1+1 dimensional model, showing that it exhibits growth with the maximal Lyapunov exponent $λ_L=2πT$ in the low temperature limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源