论文标题
使用深厚的加强学习来谈判团队成立
Negotiating Team Formation Using Deep Reinforcement Learning
论文作者
论文摘要
当自主代理在同一环境中互动时,他们通常必须合作才能实现自己的目标。代理商有效合作的一种方法是组成一个团队,对联合计划制定有约束力的协议并执行它。但是,当代理人是自私的时,必须适当分配团队成立的收益以激励协议。已经提出了各种多代理谈判的方法,但通常仅适用于特定的谈判协议。更通用的方法通常需要人类输入或特定于域的数据,因此不要扩展。为了解决这个问题,我们为培训代理提供了一个框架,以使用深厚的强化学习来谈判和组建团队。重要的是,我们的方法对特定的谈判协议没有任何假设,而是完全由驱动的经验。我们对非空间和空间扩展的团队形成谈判环境进行评估,表明我们的代理商击败了手工制作的机器人,并达到了与合作游戏理论预测的公平解决方案一致的谈判结果。此外,我们研究了代理人的物理位置如何影响谈判结果。
When autonomous agents interact in the same environment, they must often cooperate to achieve their goals. One way for agents to cooperate effectively is to form a team, make a binding agreement on a joint plan, and execute it. However, when agents are self-interested, the gains from team formation must be allocated appropriately to incentivize agreement. Various approaches for multi-agent negotiation have been proposed, but typically only work for particular negotiation protocols. More general methods usually require human input or domain-specific data, and so do not scale. To address this, we propose a framework for training agents to negotiate and form teams using deep reinforcement learning. Importantly, our method makes no assumptions about the specific negotiation protocol, and is instead completely experience driven. We evaluate our approach on both non-spatial and spatially extended team-formation negotiation environments, demonstrating that our agents beat hand-crafted bots and reach negotiation outcomes consistent with fair solutions predicted by cooperative game theory. Additionally, we investigate how the physical location of agents influences negotiation outcomes.