论文标题
Cantor动力学和简单的本地群体中的强轨道等效性
Strong Orbit Equivalence in Cantor dynamics and simple locally finite groups
论文作者
论文摘要
我们研究了与最小同构相关的某些可计数局部有限的群体,并证明了简单,可计数,本地有限群的同构关系是由骨质$ s_ \ infty $ action引起的普遍关系。这项工作还为佐丹奴,普特南和Skau的结果提供了一种动力的方法,这些方法是轨道对等的表征。
We study certain countable locally finite groups attached to minimal homeomorphisms, and prove that the isomorphism relation on simple, countable, locally finite groups is a universal relation arising from a Borel $S_\infty$-action. This work also provides a dynamical approach to a result of Giordano, Putnam and Skau characterizing strong orbit equivalence.