论文标题

朝着准确性和可扩展性:将等几何分析与通缩相结合以获得Helmholtz方程的可扩展收敛性

Towards Accuracy and Scalability: Combining Isogeometric Analysis with Deflation to Obtain Scalable Convergence for the Helmholtz Equation

论文作者

Dwarka, Vandana, Tielen, Roel, Möller, Matthias, Vuik, Kees

论文摘要

找到Helmholtz方程的快速而准确的数值解决方案仍然是一项具有挑战性的任务。污染误差(即,数值和分析波数k之间的差异)要求将网格分辨率保持在足够的良好状态以获得准确的解决方案。最近的一项研究表明,用于空间离散化的同几何分析(IGA)可显着减少污染误差。 但是,当考虑较大的波数或多个维度时,通过直接求解器求解所得的线性系统在计算上保持昂贵。另一种方法在于使用(预处理)Krylov子空间方法。最近,精确的复合物转移的拉普拉斯预处理器(CSLP)具有小的复杂移位,已显示出可导致波数独立收敛,同时使用IgA获得更准确的数值解决方案。 在本文中,我们提出了使用几何多裂方法的通缩技术与CSLP近似倒数的使用。对于一维模型问题,包括常数和非恒定波数(包括恒定和非恒定波数)获得的数值结果均相对于空间离散化的波数和近似顺序P显示出可扩展的收敛性。此外,当KH保持恒定时,与使用CSLP的确切倒数相比,提出的方法会显着减少计算时间。

Finding fast yet accurate numerical solutions to the Helmholtz equation remains a challenging task. The pollution error (i.e. the discrepancy between the numerical and analytical wave number k) requires the mesh resolution to be kept fine enough to obtain accurate solutions. A recent study showed that the use of Isogeometric Analysis (IgA) for the spatial discretization significantly reduces the pollution error. However, solving the resulting linear systems by means of a direct solver remains computationally expensive when large wave numbers or multiple dimensions are considered. An alternative lies in the use of (preconditioned) Krylov subspace methods. Recently, the use of the exact Complex Shifted Laplacian Preconditioner (CSLP) with a small complex shift has shown to lead to wave number independent convergence while obtaining more accurate numerical solutions using IgA. In this paper, we propose the use of deflation techniques combined with an approximated inverse of the CSLP using a geometric multigrid method. Numerical results obtained for both one- and two-dimensional model problems, including constant and non-constant wave numbers, show scalable convergence with respect to the wave number and approximation order p of the spatial discretization. Furthermore, when kh is kept constant, the proposed approach leads to a significant reduction of the computational time compared to the use of the exact inverse of the CSLP with a small shift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源