论文标题
量子电路架构搜索各种量子算法
Quantum circuit architecture search for variational quantum algorithms
论文作者
论文摘要
有望在嘈杂的中间尺度量子设备上获得量子优势的途径。然而,经验和理论结果都表明,部署的Ansatz严重影响了VQA的性能,使得具有较大量子门的Ansatz具有更强的表达性,而累积的噪声可能会使较差的可训练性。为了最大程度地提高VQA的鲁棒性和训练性,我们在这里设计了一种资源和运行时有效方案,称为量子体系结构搜索(QAS)。特别是,鉴于学习任务,QAS会自动寻求近乎最佳的ANSATZ(即电路架构),以平衡通过添加更多嘈杂的量子门来实现良好性能而带来的收益和副作用。我们通过IBM Cloud在数值模拟器和实际量子硬件上实现QA,以完成数据分类和量子化学任务。在研究的问题中,数值和实验结果表明,QAS不仅可以减轻量子噪声和贫瘠的高原的影响,而且还可以优于预先选择的Ansatze的VQA。
Variational quantum algorithms (VQAs) are expected to be a path to quantum advantages on noisy intermediate-scale quantum devices. However, both empirical and theoretical results exhibit that the deployed ansatz heavily affects the performance of VQAs such that an ansatz with a larger number of quantum gates enables a stronger expressivity, while the accumulated noise may render a poor trainability. To maximally improve the robustness and trainability of VQAs, here we devise a resource and runtime efficient scheme termed quantum architecture search (QAS). In particular, given a learning task, QAS automatically seeks a near-optimal ansatz (i.e., circuit architecture) to balance benefits and side-effects brought by adding more noisy quantum gates to achieve a good performance. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks. In the problems studied, numerical and experimental results show that QAS can not only alleviate the influence of quantum noise and barren plateaus, but also outperforms VQAs with pre-selected ansatze.