论文标题

乐观搜索:通过自适应对数查询的大规模数据的更改点估计

Optimistic search: Change point estimation for large-scale data via adaptive logarithmic queries

论文作者

Kovács, Solt, Li, Housen, Haubner, Lorenz, Munk, Axel, Bühlmann, Peter

论文摘要

更改点估计通常是作为搜索分段数据时描述改进拟合的增益函数的最大搜索。在所有候选人中进行搜索需要$ o(n)$评估增益功能,以进行$ n $观测值的间隔。如果每个评估都在计算要求(例如,在高维模型中),则可能会变得不可行。取而代之的是,我们建议使用$ O(\ log n)$评估来利用增益功能的特定结构的乐观搜索方法。 为了深入了解我们的战略,我们详细研究了$ p $维的高斯更改手段设置,包括高维情况。对于我们的某些建议,我们证明了用于检测变化点并得出其渐近定位率的渐近最小值最佳性。对于单变量和多元方案,这些速率(至可能的对数因子)是最佳的,并且在文献中最快的检测条件下,在高维情况下,在文献中最快的检测条件。从计算上讲,我们提出的方法的最坏情况的复杂性为$ O(NP)$,如果有一些关于最短细分市场长度的A-Priori知识,则可以改进$ n $中的sublinear。 我们的搜索策略远远超出了理论上分析的设置。作为一个例子,我们说明了高维高斯图形模型的变化点检测中的巨大计算加速。

Change point estimation is often formulated as a search for the maximum of a gain function describing improved fits when segmenting the data. Searching through all candidates requires $O(n)$ evaluations of the gain function for an interval with $n$ observations. If each evaluation is computationally demanding (e.g. in high-dimensional models), this can become infeasible. Instead, we propose optimistic search methods with $O(\log n)$ evaluations exploiting specific structure of the gain function. Towards solid understanding of our strategy, we investigate in detail the $p$-dimensional Gaussian changing means setup, including high-dimensional scenarios. For some of our proposals, we prove asymptotic minimax optimality for detecting change points and derive their asymptotic localization rate. These rates (up to a possible log factor) are optimal for the univariate and multivariate scenarios, and are by far the fastest in the literature under the weakest possible detection condition on the signal-to-noise ratio in the high-dimensional scenario. Computationally, our proposed methodology has the worst case complexity of $O(np)$, which can be improved to be sublinear in $n$ if some a-priori knowledge on the length of the shortest segment is available. Our search strategies generalize far beyond the theoretically analyzed setup. We illustrate, as an example, massive computational speedup in change point detection for high-dimensional Gaussian graphical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源