论文标题
使用个人智能手机数据的地年代特征改善实时孤独和陪伴类型的预测
Improving Prediction of Real-Time Loneliness and Companionship Type Using Geosocial Features of Personal Smartphone Data
论文作者
论文摘要
孤独感是一种广泛影响心理健康症状,可以通过社会暴露方式介导并共同介导。使用瞬间调查和智能手机感应数据在三周内收集的129名使用Android的大学生参与者收集,我们(1)调查并揭示了瞬时的孤独感和陪伴类型之间的关系,以及(2)提出并确认并确认基于智能手机的蓝牙和GPS数据的新型地理特征,以预测现实时间的孤独感和伴侣类型。我们以直觉为基础,这些直觉表征了个人的蓝牙相遇和GPS位置群集的数量和时空可预测性,以捕获社会暴露场景的个人意义,这是其时间分布和地理模式的条件。我们通过回归分析来检查我们特征与瞬时孤独感的统计相关性,并使用滑动窗口预测程序评估其预测能力。与基线相比,我们的特征可在预测瞬时的孤独和陪伴类型方面取得了显着改善,对孤独预测任务的影响更强。因此,我们建议在未来的心理健康感测和背景感知计算应用中对本研究中提出的地理社会特征进行合并和进一步评估。
Loneliness is a widely affecting mental health symptom and can be mediated by and co-vary with patterns of social exposure. Using momentary survey and smartphone sensing data collected from 129 Android-using college student participants over three weeks, we (1) investigate and uncover the relations between momentary loneliness experience and companionship type and (2) propose and validate novel geosocial features of smartphone-based Bluetooth and GPS data for predicting loneliness and companionship type in real time. We base our features on intuitions characterizing the quantity and spatiotemporal predictability of an individual's Bluetooth encounters and GPS location clusters to capture personal significance of social exposure scenarios conditional on their temporal distribution and geographic patterns. We examine our features' statistical correlation with momentary loneliness through regression analyses and evaluate their predictive power using a sliding window prediction procedure. Our features achieved significant performance improvement compared to baseline for predicting both momentary loneliness and companionship type, with the effect stronger for the loneliness prediction task. As such we recommend incorporation and further evaluation of our geosocial features proposed in this study in future mental health sensing and context-aware computing applications.