论文标题
在“旋转充电的广告解决方案中的二次$ f(t)$重力”:新旋转解决方案
On "Rotating charged AdS solutions in quadratic $f(T)$ gravity": New rotating solutions
论文作者
论文摘要
我们表明,有两个或多个程序可以概括已知的四维变换,旨在将圆柱旋转的带电精确解决方案产生到更高的空间。在以欧元为单位的一个程序中。物理。 J. C(2019)\ textbf {79}:668,一个人使用非平凡的,非双重的,Minkowskian Metric $ \barη_{ij} $来得出复杂的旋转解决方案。在这项工作中讨论的另一个过程中,人们选择了对角线Minkowskian Metric $η_{ij} $,以得出更简单且吸引人的旋转解决方案。我们还表明,如果($ g_ {μν},\,η_{ij} $)是一个旋转的解决方案($ \ bar {g} _ {μν},\,\,\barη_{ij {ij {ij {ij {ij {ij {ij {ij {ij} $)是一种旋转的解决方案,与$ \ bar的ney a $ \barη_ij} $ ij} $ ij}对称矩阵$ r $:$ \barη_{ij} =η_{ik} r_ {kj} $。
We show that there are two or more procedures to generalize the known four-dimensional transformation, aiming to generate cylindrically rotating charged exact solutions, to higher dimensional spacetimes . In the one procedure, presented in Eur. Phys. J. C (2019) \textbf{79}:668, one uses a non-trivial, non-diagonal, Minkowskian metric $\barη_{ij}$ to derive complicated rotating solutions. In the other procedure, discussed in this work, one selects a diagonal Minkowskian metric $η_{ij}$ to derive much simpler and appealing rotating solutions. We also show that if ($g_{μν},\,η_{ij}$) is a rotating solution then ($\bar{g}_{μν},\,\barη_{ij}$) is a rotating solution too with similar geometrical properties, provided $\barη_{ij}$ and $η_{ij}$ are related by a symmetric matrix $R$: $\barη_{ij}=η_{ik}R_{kj}$.