论文标题

操作员转移嘈杂的椭圆系统

Operator Shifting for Noisy Elliptic Systems

论文作者

Etter, Philip A., Ying, Lexing

论文摘要

在计算科学中,通常必须将模型参数从数据主题估算为噪声和不确定性,从而导致结果不准确。为了提高具有嘈杂参数的模型的准确性,我们考虑了在椭圆形线性系统中减少错误的问题,而操作员被噪声损坏。我们假设噪声可以保留正定性,但是除此之外,我们没有提出噪声结构的其他假设。在这些假设下,我们提出了操作员转移框架,这是一组易于实施算法的集合,通过减去额外的辅助项来增强嘈杂的反操作员。这与詹姆斯·斯坦(James-Stein)的估计器类似,这具有使嘈杂的逆操作员更接近地面真理的效果,从而通过减少偏见和差异来减少错误。我们开发自举蒙特卡洛算法,以估计所需的增强幅度,以减少噪声系统的最佳误差。为了改善这些算法的障碍性,我们提出了对逆逆向的几个近似多项式扩展,并证明这些扩展的收敛性和单调性能。我们还证明定理可以量化操作员增强获得的误差。除了理论结果外,我们还在四个不同的图和网格拉普拉斯系统上提供了一组数值实验,这些实验都证明了我们方法的有效性。

In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions the structure of the noise. Under these assumptions, we propose the operator shifting framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional auxiliary term. In a similar fashion to the James-Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth, and hence reduces error by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required augmentation magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse, and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator augmentation. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源