论文标题
Anderson本地化过渡在稳健的$ \ Mathcal {pt} $ - 广义Aubry-Andre模型的对称阶段
Anderson localization transition in a robust $\mathcal{PT}$-symmetric phase of a generalized Aubry-Andre model
论文作者
论文摘要
我们研究了一个概述$ \ mathcal {pt} $ - 对称性的广义aubry-andre模型。我们观察到一个可靠的$ \ natercal {pt} $ - 对称阶段,在系统大小和混乱强度方面,尽管哈密顿人是非流浪者,但所有特征值都是真实的。这个坚固的$ \ MATHCAL {PT} $ - 对称阶段可以支持Anderson的本地化过渡,这是由于障碍与$ \ Mathcal {pt} $对称性之间的相互作用而提供了丰富的相图。我们的模型为研究障碍驱动的本地化现象提供了一个理想的平台,以$ \ Mathcal {pt} $ - 对称系统。
We study a generalized Aubry-Andre model that obeys $\mathcal{PT}$-symmetry. We observe a robust $\mathcal{PT}$-symmetric phase with respect to system size and disorder strength, where all eigenvalues are real despite the Hamiltonian being non-hermitian. This robust $\mathcal{PT}$-symmetric phase can support an Anderson localization transition, giving a rich phase diagram as a result of the interplay between disorder and $\mathcal{PT}$-symmetry. Our model provides a perfect platform to study disorder-driven localization phenomena in a $\mathcal{PT}$-symmetric system.