论文标题

斐波那契的灰色代码q删除单词

Gray codes for Fibonacci q-decreasing words

论文作者

Baril, Jean-Luc, Kirgizov, Sergey, Vajnovszki, Vincent

论文摘要

$ n $ - lengtth二进制单词是$ q $ -decreasing,$ q \ geq 1 $,如果其每一个长度的最大因素$ 0^a1^b $满足$ 0^a1^b $满足$ a = 0 $ a = 0 $ a = 0 $或$ q \ cdot a> b $。 $(Q+1)$ - 广义斐波那契号。我们给出了一些枚举结果,并揭示了$ q $删除单词和二进制单词之间的相似之处,而在$ 1 $ bit的频率方面,没有出现$ 1^{q+1} $。在论文的第二部分中,我们提供了一种有效的详尽生成算法,以$ q $ - 以词典序列的方式删除单词,对于任何$ q \ geq 1 $,显示3灰色代码的存在,并解释如何获得这些灰色代码的生成算法。此外,我们为$ 1 $淘汰的单词提供了更严格的1灰色代码的构建,尤其是在Eğecioğlu和iršič的互连网络中陈述的猜想。

An $n$-length binary word is $q$-decreasing, $q\geq 1$, if every of its length maximal factor of the form $0^a1^b$ satisfies $a=0$ or $q\cdot a > b$.We show constructively that these words are in bijection with binary words having no occurrences of $1^{q+1}$, and thus they are enumerated by the $(q+1)$-generalized Fibonacci numbers. We give some enumerative results and reveal similarities between $q$-decreasing words and binary words having no occurrences of $1^{q+1}$ in terms of frequency of $1$ bit. In the second part of our paper, we provide an efficient exhaustive generating algorithm for $q$-decreasing words in lexicographic order, for any $q\geq 1$, show the existence of 3-Gray codes and explain how a generating algorithm for these Gray codes can be obtained. Moreover, we give the construction of a more restrictive 1-Gray code for $1$-decreasing words, which in particular settles a conjecture stated recently in the context of interconnection networks by Eğecioğlu and Iršič.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源