论文标题
手性扰动理论中弹性和手性校正对弹性Lepton-Proton散射
Radiative and chiral corrections to elastic lepton-proton scattering in chiral perturbation theory
论文作者
论文摘要
重型bary手性扰动理论介绍了对低能弹性Lepton-Proton散射过程的手性和辐射校正的统一处理。质子的辐射性手性校正包括近代到次要的领先顺序校正,而辐射校正则包括我们新颖的功率计数方案中的次订单术语。我们发现,针对MUON质子散射实验(MUSE)运动学的电子(MUON)散射过程,相对于领先订单出生的横截面的净分数较明确的手性校正可能高达$ 10 \%$($ 20 \%$)。我们向低能量Lepton-Proton运动学对模型无关的治疗显示{\ it},最大的理论不确定性是由于最近的Proton RMS半径的发表值不同的值所致,例如,下一个更高级别的HADROCONS HAIRAL术语预计会给出相当名义上的名义错误。对于辐射校正,我们通过取消所有红外奇异性的秩序来证明系统的顺序,并提出我们有限的紫外线正则化结果。我们发现,Muon-Proton散射的辐射校正为$ 2 \%$,而用于电子散射的辐射校正可能会高达$ 25 \%$。我们将这种对比的结果归因于以下事实:在误解中,在某些中间的低摩菌转移区域中,领先的辐射顺序校正在零中零零,从而在该特定的运动学区域中产生了亚领辐射性手性效应的作用。对于低能量的缪斯实验,我们所有的计算都纳入了相对论leptons的经常被忽视的Lepton群众以及Pauli的形式贡献。
A unified treatment of both chiral and radiative corrections to the low-energy elastic lepton-proton scattering processes is presented in Heavy Baryon Chiral Perturbations Theory. The proton hadronic chiral corrections include the next-to-next-to leading order corrections whereas the radiative corrections include the next-to-leading order terms in our novel power counting scheme. We find that the net fractional well-defined chiral corrections with respect to the leading order Born cross section can be as large as $10\%$ ($20\%$) for electron (muon) scattering process for MUon proton Scattering Experiment (MUSE) kinematics. We show {\it via} our model-independent treatment of the low-energy lepton-proton kinematics, that the largest theoretical uncertainty is due to the recent different published values of the proton's rms radius while, e.g., the next higher order hadronic chiral terms are expected to give rather nominal errors. For the radiative corrections we demonstrate a systematic order by order cancellation of all infrared singularities and present our finite ultraviolet regularization results. We find that the radiative corrections for muon-proton scattering is of the order of $2\%$, whereas for electron scattering the radiative corrections could be as large as $25\%$. We attribute such a contrasting result partially to the fact that in muon scattering the leading radiative order correction goes through zero in some intermediate low-momentum transfer region, leaving the sub-leading radiative chiral order effects to play a dominant role in this particular kinematic region. For the low-energy MUSE experiment, the often neglected lepton mass as well as the Pauli form factor contributions of the relativistic leptons are incorporated in all our computations.