论文标题

贝叶斯推断以随机成本进行最佳运输

Bayesian Inference for Optimal Transport with Stochastic Cost

论文作者

Mallasto, Anton, Heinonen, Markus, Kaski, Samuel

论文摘要

在机器学习和计算机视觉中,最佳运输在学习生成模型和定义结构化数据对象之间的度量距离方面取得了巨大成功,可以将其作为概率度量施加。最佳传输的关键要素是,所谓的提升在样本空间上定义的\ emph {extcy}成本(距离)函数,到样本空间上的概率度量之间的成本(距离)。但是,在许多现实生活中,成本是\ emph {随机}:例如,不可预测的交通流量会影响工厂和出口之间的运输成本。为了考虑这种随机性,我们引入了一个贝叶斯框架,用于推断由随机成本引起的最佳运输计划分布,从而有原则上包括先验信息并建模运输计划中的诱导随机性。此外,我们量身定制了一种HMC方法,以从最终的运输计划后分布中采样。

In machine learning and computer vision, optimal transport has had significant success in learning generative models and defining metric distances between structured and stochastic data objects, that can be cast as probability measures. The key element of optimal transport is the so called lifting of an \emph{exact} cost (distance) function, defined on the sample space, to a cost (distance) between probability measures over the sample space. However, in many real life applications the cost is \emph{stochastic}: e.g., the unpredictable traffic flow affects the cost of transportation between a factory and an outlet. To take this stochasticity into account, we introduce a Bayesian framework for inferring the optimal transport plan distribution induced by the stochastic cost, allowing for a principled way to include prior information and to model the induced stochasticity on the transport plans. Additionally, we tailor an HMC method to sample from the resulting transport plan posterior distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源