论文标题

具有本地和全局图信息的多视图子空间聚类网络

Multi-view Subspace Clustering Networks with Local and Global Graph Information

论文作者

Zheng, Qinghai, Zhu, Jihua, Ma, Yuanyuan, Li, Zhongyu, Tian, Zhiqiang

论文摘要

这项研究研究了多视图子空间聚类的问题,其目的是探索从不同领域或测量结果收集的数据的基本分组结构。由于数据并不总是符合许多实际应用中的线性子空间模型,因此基于浅线线性子空间模型的大多数现有多视图子空间群集方法可能会在实践中失败。此外,在大多数现有的多视图子空间聚类方法中,多视图数据的基础图总是被忽略。为了解决上述局限性,我们在本文中提出了带有本地和全局图的新型多视图子空间聚类网络,称为MSCNLG。具体而言,自动编码器网络用于多个视图上,以实现适合线性假设的潜在平滑表示。同时,通过将融合的多视图图信息集成到自表达层中,提出的MSCNLG获得了共享共享的多视图子空间表示,该表示可以通过使用标准光谱群集算法来获得聚类结果。作为端到端可训练的框架,该建议的方法全面研究了多种观点的宝贵信息。在六个基准数据集上进行的全面实验验证了拟议的MSCNLG的有效性和优势。

This study investigates the problem of multi-view subspace clustering, the goal of which is to explore the underlying grouping structure of data collected from different fields or measurements. Since data do not always comply with the linear subspace models in many real-world applications, most existing multi-view subspace clustering methods that based on the shallow linear subspace models may fail in practice. Furthermore, underlying graph information of multi-view data is always ignored in most existing multi-view subspace clustering methods. To address aforementioned limitations, we proposed the novel multi-view subspace clustering networks with local and global graph information, termed MSCNLG, in this paper. Specifically, autoencoder networks are employed on multiple views to achieve latent smooth representations that are suitable for the linear assumption. Simultaneously, by integrating fused multi-view graph information into self-expressive layers, the proposed MSCNLG obtains the common shared multi-view subspace representation, which can be used to get clustering results by employing the standard spectral clustering algorithm. As an end-to-end trainable framework, the proposed method fully investigates the valuable information of multiple views. Comprehensive experiments on six benchmark datasets validate the effectiveness and superiority of the proposed MSCNLG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源