论文标题

稀疏的对称线性阵列,冗余低和连续的共同阵列

Sparse Symmetric Linear Arrays with Low Redundancy and a Contiguous Sum Co-Array

论文作者

Rajamäki, Robin, Koivunen, Visa

论文摘要

稀疏阵列可以通过使用共阵阵列(由成对差异或传感器位置总和组成的虚拟阵列结构)来解决更多的散射器或源。尽管已经开发了用于被动传感应用程序的几种稀疏阵列配置,但存在更少的活动阵列设计。在主动传感中,总和共阵列通常比差异共阵列更相关,尤其是当散射器完全连贯时。本文提出了一种适用于主动和被动传感的通用对称阵列配置。我们首先得出了该阵列的总和和差异共同阵列的必要条件和足够的条件。然后,我们根据嵌套阵列和Kløve-Mossige基础研究了两个特定实例。特别是,我们建立了两个结果对称阵列配置的最小值解决方案与先前提出的串联嵌套阵列(CNA)和KløveArray(KA)之间的关系。 CNA和KA均具有传感器位置的闭合表达式,这意味着它们可以轻松地为任何所需的阵列大小生成。这两个阵列结构还具有低冗余,以及连续的和差异共同阵列,这使得与传感器相比,它可以解决更多的散射器或源

Sparse arrays can resolve significantly more scatterers or sources than sensor by utilizing the co-array - a virtual array structure consisting of pairwise differences or sums of sensor positions. Although several sparse array configurations have been developed for passive sensing applications, far fewer active array designs exist. In active sensing, the sum co-array is typically more relevant than the difference co-array, especially when the scatterers are fully coherent. This paper proposes a general symmetric array configuration suitable for both active and passive sensing. We first derive necessary and sufficient conditions for the sum and difference co-array of this array to be contiguous. We then study two specific instances based on the Nested array and the Kløve-Mossige basis, respectively. In particular, we establish the relationship between the minimum-redundancy solutions of the two resulting symmetric array configurations, and the previously proposed Concatenated Nested Array (CNA) and Kløve Array (KA). Both the CNA and KA have closed-form expressions for the sensor positions, which means that they can be easily generated for any desired array size. The two array structures also achieve low redundancy, and a contiguous sum and difference co-array, which allows resolving vastly more scatterers or sources than sensors

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源